
91

A Dependently Typed Calculus with Pattern Matching and

Erasure Inference

MATÚŠ TEJIŠČÁK, University of St Andrews, United Kingdom

Some parts of dependently typed programs constitute evidence of their type-correctness and, once checked,

are unnecessary for execution. These parts can easily become asymptotically larger than the remaining

runtime-useful computation, which can cause normally linear-time programs run in exponential time, or

worse. We should not make programs run slower by just describing them more precisely.

Current dependently typed systems do not erase such computation satisfactorily. By modelling erasure

indirectly through type universes or irrelevance, they impose the limitations of these means to erasure. Some

useless computation then cannot be erased and idiomatic programs remain asymptotically sub-optimal.

In this paper, we explain why we need erasure, that it is different from other concepts like irrelevance, and

propose a dependently typed calculus with pattern matching with erasure annotations to model it. We show

that erasure in well-typed programs is sound in that it commutes with reduction. Assuming the Church-Rosser

property, erasure furthermore preserves convertibility in general.

We also give an erasure inference algorithm for erasure-unannotated or partially annotated programs and

prove it sound, complete, and optimal with respect to the typing rules of the calculus.

Finally, we show that this erasure method is effective in that it can not only recover the expected asymptotic

complexity in compiled programs at run time, but it can also shorten compilation times.

CCS Concepts: · Software and its engineering→ Compilers; Functional languages;Automated static

analysis; Patterns; · Theory of computation→ Type theory.

Additional Key Words and Phrases: dependent types, erasure, inference

ACM Reference Format:

Matúš Tejiščák. 2020. A Dependently Typed Calculus with Pattern Matching and Erasure Inference. Proc. ACM

Program. Lang. 4, ICFP, Article 91 (August 2020), 29 pages. https://doi.org/10.1145/3408973

1 INTRODUCTION

Consider the following fragment of an Idris program that computes the successor of a binary
number. It includes a definition of binary numbers, indexed by their value as natural numbers, and
the type signature of add1, which guarantees that the result of add1 must indeed be the successor
of the given binary number.

data Bin : N→ Type where

N : Bin 0
I : Bin 𝑘 → Bin (1 + 2 ∗ 𝑘)
O : Bin 𝑘 → Bin (0 + 2 ∗ 𝑘)

add1 : Bin 𝑛 → Bin (1 + 𝑛)

Author’s address: Matúš Tejiščák, School of Computer Science, University of St Andrews, St Andrews, Fife, United Kingdom,

ziman@functor.sk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART91

https://doi.org/10.1145/3408973

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3408973

91:2 Matúš Tejiščák

If you try to implement this program in a dependently typed system of your choice and run it,
you may discover that it needs 𝑂 (2𝑤) space (and thus time) to compute the successor of a𝑤-bit
number!

To see why, we need to look at the elaborated form of the above, which reveals implicit arguments,
originally not seen in the surface syntax.

data Bin : N→ Type where

N : Bin 0
I : {𝑘 : N} → Bin 𝑘 → Bin (1 + 2 ∗ 𝑘)
O : {𝑘 : N} → Bin 𝑘 → Bin (0 + 2 ∗ 𝑘)

add1 : {𝑛 : N} → Bin 𝑛 → Bin (1 + 𝑛)

The constructors I and O contain a field that holds the unary representation of about the half of
the represented number. We therefore need to store the exponentially sized unary counterparts
of our binary numbers. What’s worse, in addition to storing these numbers, we need to perform
arithmetic on the unary indices, too. This is illustrated using red colour in the (somewhat contrived)
function below, which doubles the given binary number and adds one to the result.

doublePlusOne : {𝑛 : N} → Bin 𝑛 → Bin (1 + 𝑛 + 𝑛)

doublePlusOne {𝑛} 𝑥 = add1 {𝑛 + 𝑛} (binPlus {𝑛} {𝑛} 𝑥 𝑥)

This overhead is thus not just constant. Dependent typing changes the asymptotic complexity of
the programs we write, which is not acceptable.
While systems like Coq or Agda have traditionally provided their own means to erase some

proofs before code extraction, those means cannot erase fields 𝑘 and 𝑛 above, which are not proofs;
they are indices of the type family Bin.

In this paper, we present an automatic technique for discovering and erasing such compile-time-
only data in dependently typed programs with pattern matching.

Contributions.

• We explain why erasure of compile-time data is necessary, why current systems do not
remove it sufficiently, and that it differs from irrelevance. To our knowledge, this is the first
in-depth explanation of the issue in the literature.

• We present a dependently typed calculus with dependent pattern matching and (optional)
erasure annotations, and give its typing rules which check types and erasure annotations.

• For this calculus, we prove commutativity of erasure with single-step reduction in well-typed
terms. Assuming confluence, we also prove subject reduction, which implies commutativity
of erasure with multi-step reduction.

• We give an erasure inference algorithm, which fills in all erasure annotations that have not
been provided by the programmer.

• We prove that the above algorithm is sound and complete with respect to the typing rules
and optimal in the number of annotations marked as erased.

• We show that the erasure algorithm is effective in practice, and that it can make not only the
compiled programs run faster, but it can make also the compiler itself run faster.

2 MOTIVATION

The existing approaches do not work well in cases like the presented one with binary numbers.

2.1 Intrinsic Erasure

In Coq, we might attempt to place the indices in Prop, a special universe of (erasable) proof types.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:3

The direct approach requires copying the type N in Prop, together with all functions operating
on this new type, such as (+) or (∗), which causes duplication. It also fails in functions like
the run-length compression function for lists, rleCompress : (xs : List Int) → RLE xs, where
RLE : List 𝑎 → Type is the type of RLE-compressed views of a list, indexed with the original list.
The list xs must not be in Prop because rleCompress needs it at runtime. However, then we cannot
erase this index anywhere else.
We could attempt compress : (xs : List Int) → RLE (typeToProp xs) but this complicates

reasoning, especially given that typeToProp cannot be injective [Dockins 2014]. This issue, and
others, are further discussed in Section 6.2.11.
Finally, this this approach is not compatible with proof irrelevance.

2.2 Irrelevance

Irrelevance is the property of language elements that makes them ignored in definitional equality.
This is stronger than erasability, which talks only about the unnecessity to retain the values at
runtime.

Unfortunately, the terminology in the literature is not consistent. Erasability is sometimes called
irrelevance [Eisenberg 2016], run-time irrelevance [Agda authors 2020b], or external erasure [Abel
2011]. Irrelevance is sometimes called compile-time irrelevance [Agda authors 2020a] or internal
erasure [Abel 2011].
We could make the values that we want to erase irrelevant since irrelevant values can be

erased before runtime. Some literature therefore takes the approach of identifying erasure with
irrelevance [Barras and Bernardo 2008; Sjöberg 2015]; some [Mishra-Linger 2008] also consider
this as an optional design choice.

Irrelevant terms can be disregarded in equality already at the stage of type checking, making type
checking more efficient. Furthermore, a system with only one notion of łirrelevance and erasurež
might be considered simpler than one with a distinction between the two.
However, we should be cautious before choosing to identify the two concepts.

2.2.1 Irrelevance and Indices. In Agda, we might attempt to make the index of Bin irrelevant [Agda
authors 2020a]. However, irrelevance is too strong. With Bin : .(𝑛 : N) → Type, where the dot
marks the index as irrelevant, any value with type Bin𝑚 is accepted as a value of Bin 𝑛 as well,
even if𝑚 ≠ 𝑛. The value of the index is ignored, which defeats the purpose of having an index in
the first place.

2.2.2 Mobility of Values. The above problem arises because if we make the first argument 𝑘
irrelevant in constructor O : {𝑘 : N} → Bin 𝑘 → Bin (2 ∗ 𝑘), then the type of its second argument,
Bin 𝑘 , is ill-formed in Agda unless the index of Bin is also irrelevant.

This issue might be partly addressed by a generalised version of Agda’s shape irrelevance [Abel
2017] (discussed briefly in Section 6.2.5), or fully by Agda’s runtime irrelevance [Agda authors
2020b], or by using a calculus with untyped equality such as ICC* [Barras and Bernardo 2008] or
Zombie [Sjöberg 2015].

2.2.3 Not All Erased Values Should Be Irrelevant. Consider the program in Figure 1. In this program,
the argument 𝑏 of constructor 𝐶 might or might not be erasable, depending on how it’s used
elsewhere in the program. However, we do not want to make it irrelevant because that would
weaken the type signature of 𝑓 , making 𝑓 non-total.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:4 Matúš Tejiščák

data T : Type where

C : (𝑏 : Bool) → T

data U : T → Type where

UT : U (C True)
UF : U (C False)

𝑓 : U (C True) → Bool
𝑓 UT = True

Fig. 1. A program where irrelevance is not desirable.

2.2.4 Erasure Inference Is Harder with Irrelevance. If erasability implies irrelevance, then erasure
influences equality and erasure inference must be interleaved with type checking. This is more com-
plicated than just solving erasure constraints separately after type checking, and also complicates
reasoning about such systems.

2.2.5 Existing Literature. There is prior work that does not equate irrelevance and erasure [Atkey
2018; McBride 2016; Miquel 2001; Mishra-Linger 2008].

2.3 Laziness

Laziness per se does not solve the problem, either. We have not introduced notation to talk about
this precisely yet but let’s sketch the argument informally. The following function vlen calculates
the length of a vector.

vlen : (𝑛 : N) → Vec 𝑛 𝑎 → N

vlen [Z] Nil = Z
vlen

(
[S] 𝑘

)
(Cons [𝑘] 𝑥 xs) = S (vlen 𝑘 xs)

The square brackets above represent forced knowledge: by matching on the empty vector in the
first clause, we know that its length is Z, and thus we needn’t match on it to check. In the second
clause, we learn that the length index is a successor of some number 𝑘 . By knowing the number 𝑘 ,
we also know the index of the constructor Cons, which we therefore mark as forced, too. (There
are other ways to choose forcing in this scenario; this one highlights the difference.)

If the first argument of vlen were just lazy but not erased, the function would have to force it in
order to extract the value 𝑘 for the recursive call. Erasure inference can however (inductively) spot
that 𝑘 is unused in the recursive call. Since we don’t need to check the constructor, nor do we need
to extract the value 𝑘 , the whole argument can be erased.

Finally, laziness used this way is a run-time check, dynamic optimisation, and does not remove all
overhead (although it can reduce its impact). It would be better to erase at compile time, statically
guarantee that certain computations will not take place at run time, and potentially inform other
parts of the compiler.

2.4 Forcing, Detagging, and Collapsing

Originally, Idris used erasure via forcing, detagging, and collapsing [Brady et al. 2004]. It uses the
fact that whenever we match on a data constructor in a pattern-matching function, we always have
the index of the corresponding type constructor available in another argument of the function.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:5

number 𝑖 ::= 0 | 1 | 2 | . . .

name 𝑛, 𝑐, 𝑓 ::= a | b | c | . . .
term 𝑇,𝑀, 𝑁, 𝑅, 𝐹, 𝑋, 𝜎, 𝜏, 𝜌 ::= n | 𝜆𝑛 :𝑠 𝜎. 𝑇 | 𝑇 �̂� 𝑇 | □

| let 𝑑 in 𝑇 | (𝑛 :𝑠 𝜎) → 𝜌

erasure annotation 𝑟, 𝑠, 𝑡, 𝑞 ::= R | E | 𝑖 | •

context, telescope Γ,Π ::= ⋄ | Γ, 𝑑

name binding 𝑑 ::= 𝑛 :𝑠 𝜎 = 𝑏

body of name binding 𝑏 ::= 𝑇 | 𝐶 | constructor | variable

pattern clause 𝐶 ::= (𝑛 :𝑠 𝜎). 𝑃 = 𝑇

pattern 𝑃, 𝐿 ::= 𝑛 | 𝑃 �̂� 𝑃 | [𝑇] | ⌈𝑛⌉ | ⌊𝑓 ⌋

Fig. 2. Syntax of TT★

The forcing optimisation observes that if we can always recover the index fields of the data
constructor from the index of the type constructor, then thanks to the availability of the indices,
we need not store these fields of that data constructor at all.

The detagging optimisation observes that if we can recover the constructor tag from the type
index, we need not store the tag.

Finally, the collapsing optimisation observes that if a type family is detaggable and all constructor
fields are either forced index fields or recursive fields, values of this type family are always fully
determined by its indices and we never need to store them at all.
This can erase some important classes of data, such as accessibility and domain predicates,

which are typically entirely collapsible ś and it can erase them already at compile time, making
compilation more efficient.
However, this method is useful only when constructor arguments can be recovered from their

indices cheaply, such as by matching. For example, in the constructor Cons : {𝑎 : Type} →

{𝑛 : N} → (𝑥 : 𝑎) → (xs : Vect 𝑛 𝑎) → Vect (S 𝑛) 𝑎, we can effectively recover the argument 𝑛
from the index (S 𝑛).

Unfortunately, with constructor O : {𝑛 : N} → Bin 𝑛 → Bin (2 ∗𝑛), recovery of 𝑛 would require
inversion of function (2∗), and arbitrary user-defined functions need not even be injective.
In other words, forcing, detagging and collapsing represent łlossless erasurež: they remove

duplicated information, such as indices that are already present somewhere else. However, we
sometimes want to erase irreversibly.

3 A DEPENDENTLY TYPED CALCULUS WITH ERASURE

To address these issues, we propose TT★, a dependently typed calculus with erasure built into the
type system.

3.1 Syntax

Figure 2 shows the syntax of TT★, which consists of:

• an infinite supply of numbers and names;
• terms (which includes types): variables, lambdas, (erasure-annotated) applications, place-
holder for erased terms (□), let expressions and dependent products;

• erasure annotations: R stands for łretainedž, E stands for łerasedž, numbered erasure variables
(evars) represent annotations that are not known yet, the symbol • represents the lack of an
annotation;

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:6 Matúš Tejiščák

let N : Type = constructor in

let Z : N = constructor in

let S : (𝑛 : N) → N = constructor in

let pred : (𝑥 : N) → N =

⌊pred⌋ Z = Z
(𝑛 : N). ⌊pred⌋ (S 𝑛) = 𝑛

in pred (S Z)

let N :0 Type = constructor in

let Z :1 N = constructor in

let S :2 (𝑛 :3 N) → N = constructor in

let pred :4 (𝑥 :5 N) → N =

⌊pred⌋ 6̂ Z = Z
(𝑛 :7 N). ⌊pred⌋ 8̂ (S 9̂ 𝑛) = 𝑛

in pred 1̂0 (S 1̂1 Z)

Fig. 3. An example TT★ program computing the predecessor of 1, without and with explicit evars

• contexts, which are sequences of name bindings
• name bindings, which contain the name being bound, its erasure annotation and type, together
with its body;

• binding bodies, which are either plain terms, sequences of pattern clauses, or the special
values constructor or variable;

• pattern clauses, which contain a sequence of pattern variable bindings, a pattern on the left
hand side and a term on the right hand side;

• patterns: names, (erasure-annotated) applications, forced patterns, forced constructors, and a
special syntactic element used on the left hand side of pattern clauses to refer to the name of
the whole function.

A TT★ program is a single term, where all definitions are let-bound locally, even type and data
constructors, as illustrated in the tiny example in Figure 3. The pattern matching facility of TT★
are pattern clauses and there are no case expressions. Forced patterns and forced constructors (also
known as presupposed constructors [Goguen et al. 2006]) are marked explicitly.
The central feature of TT★ are erasure annotations on every name binding (on the colon of

binding 𝑛 :𝑟 𝜏), and between the operator and the operand of every term or pattern application
(𝐹 �̂� 𝑋).

Annotation E says that the name binding or argument of application can be erased before runtime,
while annotation R says that they have to be retained. Annotation 𝑖 represents an unknown erasure
annotation, where 𝑖 is the number of the corresponding erasure variable (evar). We identify evars
with their numbers. The symbol • stands for an evar that has not been numbered yet.

Notation.

• 𝑛 :𝑠 𝜎 without a body stands for 𝑛 :𝑠 𝜎 = variable.
• 𝑛 : 𝜎 without an erasure annotation stands for 𝑛 :• 𝜎 .
• Binding 𝑛 = 𝑏 without a type stands for 𝑛 :• □ = 𝑏.
• 𝑥 stands for łsequence of 𝑥sž and we will usually refer to the individual elements of the
sequence as 𝑥𝑖 .

• 𝑓 �̂�𝑋 stands for 𝑓 𝑟1 𝑋1 𝑟2 𝑋2 . . . 𝑟𝑘 𝑋𝑘 . This is a slight abuse of notation; application is, of course,
left-associative.

• BV(Γ) stands for the set of names bound in Γ.
• Γ,Π stands for the concatenation of telescopes Γ and Π into a single telescope.
• Γ;Π is a pair of telescopes Γ and Π. It can be viewed as concatenation while remembering
the boundary.

• We assume that all bindings bind distinct names to avoid questions around variable capture.
• We say łretainedž and łretentionž as the counterpart of łerasedž and łerasurež.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:7

Γ;Π ⊢ 𝑃 ∥𝜇 𝑇 Γ;Π ⊢ 𝑃 ′ ∥𝜇 𝑇
′

Γ;Π ⊢ 𝑃 �̂� 𝑃
′ ∥𝜇 𝑇 𝑟 ′ 𝑇

′
MatchApp

Γ;Π ⊢ [𝑇] ∥𝜇 𝑇
′
MatchForced

(𝑐 ′ :𝑠 𝜎 = constructor) ∈ Γ

Γ;Π ⊢ ⌈𝑐⌉ ∥𝜇 𝑐
′

MatchForcedCtor
(𝑓 :𝑠 𝜎 = 𝐶) ∈ Γ

Γ;Π ⊢ ⌊𝑓 ⌋ ∥𝜇 𝑓
MatchDefName

(𝑐 :𝑠 𝜎 = constructor) ∈ Γ

Γ;Π ⊢ 𝑐 ∥𝜇 𝑐
MatchCtor

(𝑛 :𝑠 𝜎 = variable) ∈ Π

Γ;Π ⊢ 𝑛 ∥𝜇 𝜇 (𝑛)
MatchPatVar

Fig. 4. Pattern match
The general form of the judgement is Γ;Π ⊢ 𝑃 ∥𝜇 𝑇 for pattern 𝑃 , term 𝑇 , and substitution 𝜇.

Γ ⊢ 𝑋𝑖 ∦ 𝑋
′
𝑖

𝑐 bound as constructor in Γ

Γ ⊢ 𝑐 �̂�𝑋 ∦ 𝑐 𝑟 ′𝑋
′

MismatchArg

Γ ⊢ 𝑋𝑖 ∦ 𝑋
′
𝑖

𝑐, 𝑐 ′ constructors in Γ

Γ ⊢ ⌈𝑐⌉ �̂�𝑋 ∦ 𝑐
′
𝑟 ′𝑋

′
MismatchArgForced

𝑐 ≠ 𝑐 ′

𝑐, 𝑐 ′ constructors in Γ

Γ ⊢ 𝑐 �̂�𝑋 ∦ 𝑐
′
𝑟 ′𝑋

′
MismatchHead

Γ ⊢ 𝑋𝑖 ∦ 𝑋
′
𝑖 (𝑓 :𝑠 𝜎 = 𝐶) ∈ Γ

Γ ⊢ ⌊𝑓 ⌋�̂�𝑋 ∦ 𝑓 𝑟 ′𝑋
′

MismatchLHS

Fig. 5. Pattern mismatch
The general form of the judgement is Γ ⊢ 𝑃 ∦ 𝑇 for pattern 𝑃 and term 𝑇 .

In both rules, the sequences of arguments 𝑋 may be empty.

3.2 Pattern Matching

Before we talk about reduction, we need to define pattern matching and its prerequisites.
A substitution is a function from names to terms. Substitution 𝜇 applied to term 𝑇 is written

𝑇 [𝜇]. The domain of a substitution is the set of names changed by the substitution; Dom(𝜇) = {𝑛 |

𝜇 (𝑛) ≠ 𝑛}. Notation 𝑥 ↦→ 𝑋 stands for substitution 𝜇 such that 𝜇 (𝑥) = 𝑋 and for all 𝑦 ≠ 𝑥 , 𝜇 (𝑦) = 𝑦.
Hence 𝑇 [𝑥 ↦→ 𝑋] substitutes 𝑋 for 𝑥 in term 𝑇 .

The set of free pattern variables of pattern 𝑃 with pattern variable context Π is given by function
FPVΠ (𝑃), where FPVΠ (𝐹 �̂� 𝑋) = FPVΠ (𝐹) ∪ FPVΠ (𝑋) and FPVΠ (𝑛) = {𝑛} if 𝑛 is bound in Π. For
all other pattern forms 𝑃 , FPVΠ (𝑃) = ∅.

The judgement Γ;Π ⊢ 𝑃 ∥𝜇 𝑇 says that in context Γ together with context of pattern variables Π,
pattern 𝑃 matches term𝑇 , subject to substitution 𝜇. Informally, 𝜇 substitutes for exactly the pattern
variables in 𝑃 (names bound in Π), obtaining a term equivalent to 𝑇 .

The judgement Γ ⊢ 𝑃 ∦ 𝑇 says that pattern 𝑃 can never match term𝑇 , no matter what substitution
we choose. Context Γ is used to distinguish names of constructors from names of pattern variables.

In a situation where neither match or mismatch holds, we say that matching is stuck.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:8 Matúš Tejiščák

(𝑛 :𝑟 𝜏 = 𝑇) ∈ Γ 𝑇 is a term

Γ ⊢ 𝑛⇝ 𝑇
RedVar

Γ ⊢ (𝜆𝑥 :𝑠 𝜎. 𝑇) �̂� 𝑋 ⇝ 𝑇 [𝑥 ↦→ 𝑋]
Redex

𝑛 ∉ FV(𝑇)

Γ ⊢ (let 𝑛 :𝑠 𝜎 = 𝑏 in 𝑇) ⇝ 𝑇
RedLetElim

Γ ⊢ (let 𝑑 in 𝐹) �̂� 𝑋

⇝ let 𝑑 in (𝐹 �̂� 𝑋)

RedLetAppL

(𝑓 :𝑠 𝜏 = 𝐶) ∈ Γ 𝐶𝑖 =: (Π𝑖 . 𝐿𝑖 = 𝑅𝑖)

Γ;Π𝑘 ⊢ PatWF𝑓 (𝐿𝑘) Dom(𝜇) = FPVΠ𝑘
(𝐿𝑘)

∀𝑖 < 𝑘.
(
Γ ⊢ 𝐿𝑖 ∦ 𝑓 �̂�𝑋

)
Γ;Π𝑘 ⊢ 𝐿𝑘 ∥𝜇 𝑓 �̂�𝑋

Γ ⊢ 𝑓 �̂�𝑋 ⇝ 𝑅𝑘 [𝜇]
RedClauses

Fig. 6. Computation rules of TT★
The general form of the judgement is Γ ⊢ 𝑇 ⇝ 𝑇 ′ for terms 𝑇 and 𝑇 ′.

Reduction rules of TT★ form the structural closure of these computation rules.

3.3 Reduction Rules

Reduction in TT★ is the structural closure of the rules shown in Figure 6 and it always takes place in
a context. Variables reduce to their definitions, redexes 𝛽-reduce, unreferenced let bindings reduce
away, let bindings float out of applications.
The most involved reduction rule is RedClauses, the rule that reduces applications of pattern-

matching functions. Such an application has the general form 𝑓 �̂�𝑋 , where 𝑓 is the name of the

function, and 𝑋 are its actual parameters, pairwise coupled with erasure annotations 𝑟 . The rule

says that if the left hand side of the 𝑘-th clause matches 𝑓 �̂�𝑋 then the whole application reduces to
𝑅𝑘 [𝜇], which is the right hand side of the 𝑘-th clause, subject to certain substitution 𝜇.

Rule RedClauses starts with the requirement that 𝑓 is bound in context Γ as a function defined

by pattern clauses 𝐶 . For 𝑖-th clause 𝐶𝑖 , the telescope of its pattern variables is named Π𝑖 , the
pattern on the left hand side is named 𝐿𝑖 , and the term on the right hand side is named 𝑅𝑖 .

The requirement Γ;Π ⊢ PatWF𝑓 (𝐿𝑘) imposes certain well-formedness requirements on the left

hand side of the matching clauses to rule out invalid patterns like
(
𝑓 (pred Z)

)
, where pred is a

function, not a constructor. We need this because TT★ does not have a syntactic difference between
constructors and non-constructors.
The requirement ∀𝑖 < 𝑘.

(
Γ ⊢ 𝐿𝑖 ∦

𝑓 𝑓 �̂�𝑋
)
says that before 𝐶𝑘 can be attempted, all left hand

sides preceding it must mismatch 𝑓 �̂�𝑋 without getting stuck. Mismatch is defined in Figure 5.

Finally, the requirements Γ;Π𝑘 ⊢ 𝐿𝑘 ∥𝜇 𝑓 �̂�𝑋 and Dom(𝜇) = FPVΠ𝑘
(𝐿𝑘) say that the left hand

side of the 𝑘-th clause matches 𝑓 �̂�𝑋 with substitution 𝜇 such that 𝜇 substitutes exactly for the free
pattern variables in 𝐿𝑘 .

With the requirements satisfied, we can reduce 𝑓 �̂�𝑋 to 𝑅𝑘 [𝜇], which is the right hand side of the
first matching pattern clause modified by the substitution that made its left hand side match.

3.3.1 Conversion. Convertibility is the reflexive symmetric transitive closure of reduction, as
shown in Figure 7.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:9

Γ ⊢ 𝜎 ⇝ 𝜏

Γ ⊢ 𝜎 ≈ 𝜏
CRed

Γ ⊢ 𝜏 ≈ 𝜏
CRefl

Γ ⊢ 𝜎 ≈ 𝜏

Γ ⊢ 𝜏 ≈ 𝜎
CSym

Γ ⊢ 𝜏 ≈ 𝜎

Γ ⊢ 𝜎 ≈ 𝜌

Γ ⊢ 𝜏 ≈ 𝜌
CTrans

Fig. 7. Convertibility rules of TT★

su
rfa
ce
la
ng
ua
ge

TT•
★

TTevar
★ TTRE

★
TT□

★

co
m
pi
le
r b
ac
ke
nd

ty
pe
el
ab
or
at
io
n

nu
m
be
rin
g
•s

er
as
ur
e
in
fe
re
nc
e

ty
pe
+e
ra
su
re
ch
ec
k

er
as
ur
e

variant 𝑟 ::= term □

TT•
★

R, E, • Ð

TTevar
★

R, E, 𝑖 Ð

TTRE
★

R, E Ð

TT□
★

• allowed

Fig. 8. Variants of TT★

3.3.2 Patterns to Terms. We can turn any pattern 𝑃 into term |𝑃 | using the operation | · | defined
as follows.

|𝑛 | = 𝑛 | ⌊𝑓 ⌋ | = 𝑓 | ⌈𝑐⌉ | = 𝑐 | [𝑇] | = 𝑇 |𝐹 �̂� 𝑋 | = |𝐹 | �̂� |𝑋 |

3.4 Variants of TT★

It is useful to define several variants of TT★ for the intermediate steps of the elaboration pipeline, as
shown in Figure 8. Each variant is restricted to a different subset of syntax of erasure annotations
and may disallow the erased term syntax □. The name TT★ stands for any of these variants.

With this distinction, the core calculus is TTRE
★
, which contains all type and erasure information

in a fully explicit form.

3.5 Typing Rules

These rules check the type- and erasure-correctness of TTRE
★

terms (Figure 9), bindings (Figure 10),
and patterns (Figure 11) in a mutually inductive way. For terms and patterns, the rules are designed
to infer the type, if it exists. Rules Conv and PatConv rely on convertibility, which is the reflexive
symmetric transitive closure of reduction, as defined in Figure 7.

3.5.1 Lattice of Erasure Annotations. Erasure annotations E and R form the lattice E < R. This
defines relation ⩽ so that E ⩽ 𝑟 for any 𝑟 and 𝑟 ⩽ R for any 𝑟 , and operation ∧ so that E ∧ 𝑟 = E
and R ∧ 𝑟 = 𝑟 .

3.5.2 Terms. Figure 9 shows the rules for terms. Rule Type shows that TT★ uses type-in-type.
Universe stratification is orthogonal to the focus of this paper and implementations are expected to
bring their own universe stratification.

Rule Ref says that whenever a name is referenced, its binding in the context must be retained at
least as much as the reference.

Rule Lam places the abstract variable in the context with the declared erasure annotation 𝑠 , while
McBride [2016] and QTT [Atkey 2018] would place 𝑛 :𝑠∧𝑟 𝜎 in the context here. We use a different
application and substitution rule instead. Similarly, in rule Pi, we use annotation 𝑠 instead of E on
the binding of 𝑛.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:10 Matúš Tejiščák

Γ ⊢ Type :𝑟 Type
Type

𝑛 :𝑠 𝜏 = 𝑏 ∈ Γ 𝑟 ⩽ 𝑠

Γ ⊢ 𝑛 :𝑟 𝜏
Ref

Γ ⊢ 𝜎 :E Type Γ, 𝑛 :𝑠 𝜎 ⊢ 𝑇 :𝑟 𝜌

Γ ⊢ (𝜆𝑛 :𝑠 𝜎. 𝑇) :𝑟 (𝑛 :𝑠 𝜎) → 𝜌
Lam

Γ ⊢ 𝜎 :E Type Γ, 𝑛 :𝑠 𝜎 ⊢ 𝜌 :E Type

Γ ⊢
(
(𝑛 :𝑠 𝜎) → 𝜌

)
:𝑟 Type

Pi

Γ ⊢ 𝐹 :𝑟 (𝑛 :𝑠 𝜎) → 𝜌 Γ ⊢ 𝑋 :𝑟∧𝑠 𝜎

Γ ⊢ 𝐹 �̂� 𝑋 :𝑟 𝜌 [𝑛 ↦→ 𝑋]
App

Γ ⊢ BndOk(𝑑) Γ, 𝑑 ⊢ 𝑇 :𝑟 𝜏

Γ ⊢
(
let 𝑑 in 𝑇

)
:𝑟 𝜏

Let
Γ ⊢ 𝑇 :𝑟 𝜏 Γ ⊢ 𝜏 ≈ 𝜎 Γ ⊢ 𝜎 :E Type

Γ ⊢ 𝑇 :𝑟 𝜎
Conv

Fig. 9. Erasure checking and type inference rules for TTRE
★

terms

Rule App illustrates the key point of erasure: the argument 𝑋 is retained only if the whole term
𝐹 �̂� 𝑋 is retained and if the application itself is retained. Otherwise, 𝑋 can be erased.

Rule Let checks that the binding is well-typed, places it in the context and then checks the RHS.
Finally, rule Conv embodies the convertibility of types, as defined in Figure 7.

3.5.3 Forced Patterns.

Definition 1. We say that the LHS of a clause, ⌊𝑓 ⌋�̂�𝑋 , is forced-pattern-consistent if the following

holds for any Γ, Π, 𝑟 ′, 𝑋 ′, and 𝜏 .

Γ;Π ⊢ ⌊𝑓 ⌋�̂�𝑋 ∥𝜇 𝑓 𝑟 ′𝑋
′ Γ ⊢ 𝑓 𝑟 ′𝑋

′ : 𝜏

∀𝑖 . Γ ⊢ |𝑋𝑖 | [𝜇] ≈ 𝑋 ′
𝑖

This requirement is also known as respectfulness of patterns [Goguen et al. 2006]. In this paper,
we do not give an algorithm to check the consistency of forced patterns.

3.5.4 Bindings. Figure 10 shows the rules for bindings. Judgement Bnds checks telescopes of
bindings, such as contexts. Judgement Bnd checks individual bindings. Rule BndAbstr checks that
the types of the postulated names are well-formed. BndTerm ensures match of the declared and
inferred types of the term that defines the binding.
Clause checks the type-correctness of a single clause. It is based on the corresponding rule of

TT [Brady 2013], which infers the type of the pattern on the LHS, the type of the term on the RHS,
and then checks that they are convertible. This corresponds to the third line of hypotheses of rule
Clause.

The first line of hypotheses of Clause checks that the telescope of pattern variable bindings Π is
well-typed. Like RedClause, it also checks that the pattern is well-formed and that the free pattern
variables on the LHS are exactly the names bound in Π.

The second line of hypotheses of Clause requires that the LHS is linear: contains no repeated
pattern variables (pattern variables occurring in forced patterns do not count). It also requires that
the LHS be forced-pattern-consistent (as defined in Section 3.5.3).

The general form of the conclusion is Γ ⊢ Clause
𝑓
𝑟 (𝐶), where 𝐶 is the clause, 𝑓 is the name of

the function in whose definition the clause occurs, and 𝑟 is the erasure annotation of the function.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:11

Γ ⊢ Bnds(⋄)
BndsBase

Γ ⊢ Bnd(𝑑1)

Γ, 𝑑1 ⊢ Bnds(𝑑2, . . . , 𝑑𝑛)

Γ ⊢ Bnds(𝑑1, 𝑑2, . . . , 𝑑𝑛)
BndsStep

Γ ⊢ 𝜏 :E Type
𝑏 ∈ {variable, constructor}

Γ ⊢ Bnd(𝑛 :𝑟 𝜏 = 𝑏)
BndAbstr

𝑇 is a term
Γ ⊢ 𝜏 :E Type Γ, 𝑛 :𝑟 𝜏 ⊢ 𝑇 :𝑟 𝜏

Γ ⊢ Bnd(𝑛 :𝑟 𝜏 = 𝑇)
BndTerm

Γ ⊢ 𝜏 :E Type ∀𝑖 .
(
Γ, 𝑛 :𝑟 𝜏 ⊢ Clause𝑛𝑟 (𝐶𝑖)

)

Γ ⊢ Bnd(𝑛 :𝑟 𝜏 = 𝐶)
BndClauses

Γ ⊢ Bnds(Π) Γ;Π ⊢ PatWF𝑓 (⌊𝑓 ⌋ �̂�𝑃) FPVΠ

(
⌊𝑓 ⌋ �̂�𝑃

)
= BV(Π)

⌊𝑓 ⌋ �̂�𝑃 is linear ⌊𝑓 ⌋ �̂�𝑃 is forced-pattern-consistent

Γ;Π ⊢ ⌊𝑓 ⌋ �̂�𝑃 :𝑟𝑟 𝜏 Γ,Π ⊢ 𝑅 :𝑟 𝜏

Γ ⊢ Clause
𝑓
𝑟

(
Π. ⌊𝑓 ⌋ �̂�𝑃 = 𝑅

) Clause

Fig. 10. Erasure and type checking rules for TTRE
★

bindings

3.5.5 Patterns. The general form of the pattern typing judgement is Γ;Π ⊢ 𝑃 :
𝑞
𝑟 𝜏 . It contains two

contexts, Γ is the usual context and Π is the context of pattern variables declared in the pattern
clause. The annotation 𝑟 says whether the pattern occurs in an erasable place, and the annotation 𝑞
is the erasure annotation of the whole function being defined.
Rule PatVar states that any pattern variable must be bound with exactly the same retention

as the reference to it. Since the flow of information in pattern variables is reversed compared to
term variables, we might expect to see the converse of the inequality from the term rule Ref here.
However, we require exact equality to make metatheory easier by removing an unnecessary degree
of freedom between the declaration of the pattern variable and its occurrence.
Rule PatCtor says that if the whole function is retained (expressed by 𝑞), then the pattern

inspects and should be retained (𝑞 ⩽ 𝑟) and also the binding of the constructor should be retained
(𝑞 ⩽ 𝑠).

Rule PatDefName infers the type for the name of the function being defined. The function is
bound in Γ without its body because of BndClauses.

Rule PatForced concatenates contexts Γ and Π into a single context and then checks the forced
term in it.
Rules PatApp and PatConv mirror their counterparts for terms and rule PatForcedCtor for

constructor ⌈𝑛⌉ essentially mirrors the behaviour of rule PatForced for forced pattern [𝑛].

3.6 Erasure

The erasure operation removes parts of a program not necessary for its execution. Figure 12 shows
the definition of the erasure operation ⟨·⟩, overloaded for various syntactic classes.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:12 Matúš Tejiščák

(𝑛 :𝑟 𝜎 = variable) ∈ Π

Γ;Π ⊢ 𝑛 :
𝑞
𝑟 𝜎

PatVar

𝑞 ⩽ 𝑠 𝑞 ⩽ 𝑟

(𝑛 :𝑠 𝜎 = constructor) ∈ Γ

Γ;Π ⊢ 𝑛 :
𝑞
𝑟 𝜎

PatCtor

(𝑛 :𝑠 𝜎 = constructor) ∈ Γ 𝑟 ⩽ 𝑠

Γ;Π ⊢ ⌈𝑛⌉ :
𝑞
𝑟 𝜎

PatForcedCtor
(𝑓 :𝑞 𝜎) ∈ Γ

Γ;Π ⊢ ⌊𝑓 ⌋ :
𝑞
𝑞 𝜎

PatDefName

Γ;Π ⊢ 𝐹 :
𝑞
𝑟 (𝑛 :𝑠 𝜎) → 𝜌 Γ;Π ⊢ 𝑋 :

𝑞
𝑟∧𝑠 𝜎

Γ;Π ⊢ 𝐹 �̂� 𝑋 :
𝑞
𝑟 𝜌 [𝑛 ↦→ |𝑋 |]

PatApp
Γ,Π ⊢ 𝑇 :𝑟 𝜏

Γ;Π ⊢ [𝑇] :
𝑞
𝑟 𝜏

PatForced

Γ;Π ⊢ 𝑃 :
𝑞
𝑟 𝜏 Γ,Π ⊢ 𝜏 ≈ 𝜎 Γ,Π ⊢ 𝜎 :E Type

Γ;Π ⊢ 𝑃 :
𝑞
𝑟 𝜎

PatConv

Fig. 11. Erasure checking, type inference rules for TTRE
★

patterns

Abstract binding bodies:

⟨constructor⟩ = constructor

⟨variable⟩ = variable

Pattern clauses:〈
𝑑. 𝐿 = 𝑅

〉
=

〈
𝑑
〉
. ⟨𝐿⟩ = ⟨𝑅⟩

Substitutions

⟨𝜇⟩ (𝑛) = ⟨𝜇 (𝑛)⟩

Terms:

⟨𝑛⟩ = 𝑛

⟨𝜆 𝑛 :E 𝜏 . 𝑇 ⟩ = ⟨𝑇 ⟩

⟨𝜆 𝑛 :R 𝜏 . 𝑇 ⟩ = 𝜆𝑛. ⟨𝑇 ⟩

⟨let 𝑛 :E 𝜏 = 𝑏 in 𝑇 ⟩ = ⟨𝑇 ⟩

⟨let 𝑛 :R 𝜏 = 𝑏 in 𝑇 ⟩ = let 𝑛 = ⟨𝑏⟩ in ⟨𝑇 ⟩〈
𝐹 Ê 𝑋

〉
= ⟨𝐹 ⟩〈

𝐹 R̂ 𝑋
〉

= ⟨𝐹 ⟩ ⟨𝑋 ⟩

⟨(𝑛 :𝑟 𝜏) → 𝑇 ⟩ = □

Patterns:

⟨𝑛⟩ = 𝑛〈
𝐹 Ê 𝑋

〉
= ⟨𝐹 ⟩〈

𝐹 R̂ 𝑋
〉

= ⟨𝐹 ⟩ ⟨𝑋 ⟩

⟨[𝑇]⟩ = [⟨𝑇 ⟩]

⟨⌊𝑓 ⌋⟩ = ⌊𝑓 ⌋

⟨⌈𝑐⌉⟩ = ⌈𝑐⌉

Contexts and telescopes of bindings:

⟨⋄⟩ = ⋄〈
𝑛 :E 𝜏 = 𝑏, 𝑑

〉
=

〈
𝑑
〉

〈
𝑛 :R 𝜏 = 𝑏, 𝑑

〉
= 𝑛 = ⟨𝑏⟩ ,

〈
𝑑
〉

Fig. 12. Erasure translation, removing erasable code

These rules use notation shortcuts introduced in Section 3.1.

3.7 Properties

Theorem 1 (Soundness of erasure). Erasure commutes with single-step reduction in retained terms.

Γ ⊢ 𝑇 :R 𝜏 Γ ⊢ 𝑇 ⇝ 𝑀

either ⟨𝑇 ⟩ = ⟨𝑀⟩

or ⟨Γ⟩ ⊢ ⟨𝑇 ⟩⇝ ⟨𝑀⟩

This theorem does not depend on Church-Rosser.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:13

Proof sketch 1. By induction on the derivation of reduction. The proof mostly relies on basic properties

of substitution.

In the case with pattern matching, we use two lemmas saying that erasure preserves pattern matches,

and pattern mismatches. These two lemmas form the bulk of the proof.

Remark 1. As Mishra-Linger notes [2008], this theorem shows why erasure saves work. It happens
whenever ⟨𝑇 ⟩ = ⟨𝑀⟩ so the erased program need not perform the reduction.

Conjecture 1 (Church-Rosser). The transitive reflexive closure of⇝, written⇝★, is confluent.

Γ ⊢ 𝑇 ⇝★ 𝑀 Γ ⊢ 𝑇 ⇝★ 𝑀 ′

∃𝑁 . Γ ⊢ 𝑀⇝★ 𝑁 Γ ⊢ 𝑀 ′
⇝

★ 𝑁

Remark 2. We have an incomplete proof of this conjecture using parallel reduction. The remaining
hole is caused by the need to perform reduction in contexts, arising in the inductive step in let

expressions. Until we generalise our proof framework to let us express this, we pose Church-Rosser
as a conjecture.

Theorem 2 (Subject reduction). Assuming Church-Rosser, reduction preserves types.

Γ ⊢ 𝑇 :𝑟 𝜏 Γ ⊢ 𝑇 ⇝ 𝑀

Γ ⊢ 𝑀 :𝑟 𝜏

Proof sketch 2. By induction on the derivation of reduction. The proof mostly relies on basic properties

of substitution and the typing relation.

In the case with pattern matching, we use the Pattern Conversion Lemma. It states that, subject to

some additional consistency constraints, if term 𝑇 matches pattern 𝑃 with substitution 𝜇, their types

are also related through this substitution.

· · · additional requirements · · ·

Γ;Π ⊢ 𝑃 :
𝑞
𝑟 𝜆 Γ;Π ⊢ 𝑃 ∥𝜇 𝑇 Γ ⊢ 𝑇 :𝑟 𝜏

Γ ⊢ 𝜆[𝜇] ≈ 𝜏
PatternConversionLemma

This lemma (and its dependencies) forms the bulk of the proof and establishes the missing link between

the unreduced term 𝑇 and its reduct𝑀 , which must have the form 𝑅 [𝜇] for a term 𝑅 with type 𝜆.

Corollary 1. Erasure commutes with multi-step reduction in retained terms, assuming Church-Rosser.

Γ ⊢ 𝑇 :R 𝜏 Γ ⊢ 𝑇 ⇝★ 𝑀

⟨Γ⟩ ⊢ ⟨𝑇 ⟩⇝★ ⟨𝑀⟩

Proof. By iteration of Theorem 1. Use Subject Reduction to carry the well-typedness property
along. □

Corollary 2. Erasure preserves reduction to primitives, such as nullary constructors, integers, Booleans,

or strings, assuming Church-Rosser.

Γ ⊢ 𝑇 :R 𝜏 Γ ⊢ 𝑇 ⇝★ 𝑀 ⟨𝑀⟩ = 𝑀

⟨Γ⟩ ⊢ ⟨𝑇 ⟩⇝★ 𝑀

Proof. Substitute ⟨𝑀⟩ = 𝑀 in Corollary 1. □

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:14 Matúš Tejiščák

Γ ⊢ 𝜎 ⇝ 𝜏

Γ ⊢ 𝜎 ≈ 𝜏 | ∅
CRed

𝜏 = 𝜎 | Δ

Γ ⊢ 𝜏 ≈ 𝜎 | Δ
CRefl

Γ ⊢ 𝜎 ≈ 𝜏 | Δ

Γ ⊢ 𝜏 ≈ 𝜎 | Δ
CSym

Γ ⊢ 𝜏 ≈ 𝜎 | Δ

Γ ⊢ 𝜎 ≈ 𝜌 | Σ

Γ ⊢ 𝜏 ≈ 𝜌 | Δ ∪ Σ
CTrans

Fig. 13. Conversion rules of TTevar
★

Corollary 3. Erasure preserves conversion, assuming Church-Rosser.

Γ ⊢ 𝑇 ≈ 𝑇 ′
Γ ⊢ 𝑇 :R 𝜏 Γ ⊢ 𝑇 ′ :R 𝜏

′

⟨Γ⟩ ⊢ ⟨𝑇 ⟩ ≈ ⟨𝑇 ′⟩

Proof. By Church-Rosser, 𝑇 and 𝑇 ′ have a common reduct. By Corollary 1, this is preserved by
erasure. □

4 ERASURE INFERENCE

Erasure inference is elaboration of TT•
★
programs, where some or all erasure annotations are

unknown, into TTRE
★

programs, where each erasure annotation has been assigned a definite value R
or E. This happens in the following steps.

(1) Start with a TT•
★
program, which was obtained by erasure-agnostic type elaboration of the

program expressed in the surface syntax.
(2) Replace all unknown erasure annotations (•) with unique evars. This translates the program

from TT•
★
to TTevar

★
.

(3) Check the program using the constraint-generating typing rules (Section 4.1).
(4) Find a solution of the constraints such that the minimal number of evars is assigned R.
(5) Replace each evar with E or R, according to the solution. This translates the program from

TTevar
★

to TTRE
★
.

Once erasure inference has determined which parts of the program can be erased and annotated
them with E, we can erase them, as described in Section 3.6, turning a TTRE

★
program into a TT□

★

program, and execute the result more efficiently.

4.1 Constraint-Generating Rules

These rules mostly mirror the type checking rules we saw in Section 3.5. Type-wise, they work the
same, always inferring the types of terms and patterns, if they exist.
Compared to the checking rules, here we extend each type-checking or conversion judgement

J with a set of constraints on the right-hand side, written J | Δ, where the constraints in Δ relate
the evars occuring in J , and must be satisfied for the judgement to hold. We pronounce this łJ ,
given Δž.

4.1.1 Constraints. Each constraint has the form 𝐺 → 𝑟 , where 𝐺 is a set of erasure annotations
(łguardsž) and 𝑟 is an erasure annotation. Each erasure annotation can be either an evar or a specific
value R or E. Intuitively, 𝐺 → 𝑟 means that if all annotations in 𝐺 are retained, 𝑟 must be retained,
too.
We write 𝑟 → 𝑠 for

{
{𝑟 } → 𝑠

}
, 𝑟 ↔ 𝑠 for (𝑟 → 𝑠) ∪ (𝑠 → 𝑟), and (𝐺 ∧ 𝑟) for 𝐺 ∪ {𝑟 }. We also

write 𝐺 → 𝑋 for {𝐺 → 𝑟 | 𝑟 ∈ 𝑋 } and 𝑋 ↔ 𝑌 for (𝑋 → 𝑌) ∪ (𝑌 → 𝑋).

4.1.2 Conversion. The convertibility judgement generates constraints (Figure 13). Rule CRefl
uses constrained equality 𝜏 = 𝜎 | Δ, which says that 𝜏 and 𝜎 are syntactically equal up to erasure

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:15

Γ ⊢ Type :𝐺 Type | ∅
Axiom

(𝑛 :𝑠 𝜏 = 𝑏) ∈ Γ

Γ ⊢ 𝑛 :𝐺 𝜏 | 𝐺 → 𝑠
Ref

Γ ⊢ Bnd(𝑛 :𝑠 𝜎) | Δ Γ, 𝑛 :𝑠 𝜎 ⊢ 𝑇 :𝐺 𝜌 | Σ

Γ ⊢ (𝜆 𝑛 :𝑠 𝜎. 𝑇) :𝐺 (𝑛 :𝑠 𝜎) → 𝜌 | Δ ∪ Σ
Lam

Γ ⊢ Bnd(𝑛 :𝑠 𝜎) | Δ Γ, 𝑛 :𝑠 𝜎 ⊢ 𝜌 :{E} Type | Σ

Γ ⊢
(
(𝑛 :𝑠 𝜎) → 𝜌

)
:𝐺 Type | Δ ∪ Σ

Pi
Γ ⊢ Bnd(𝑑) | Δ Γ, 𝑑 ⊢ 𝑇 :𝐺 𝜏 | Σ

Γ ⊢
(
let 𝑑 in 𝑇

)
:𝐺 𝜏 | Δ ∪ Σ

Let

Γ ⊢ 𝐹 :𝐺 (𝑛 :𝑡 𝜎) → 𝜌 | Δ Γ ⊢ 𝑋 :𝐺∧𝑠 𝜎 | Σ

Γ ⊢ 𝐹 �̂� 𝑋 :𝐺 𝜌 [𝑛 ↦→ 𝑋] | Δ ∪ Σ ∪ 𝑡 ↔ 𝑠
App

Γ ⊢ 𝑇 :𝐺 𝜏 | Δ Γ ⊢ 𝜏 ≈ 𝜎 | Σ

Γ ⊢ 𝑇 :𝐺 𝜎 | Δ ∪ Σ
Conv

Fig. 14. Erasure inference rules for TTevar
★

terms

Γ ⊢ Bnds(⋄) | ∅
BndsBase

Γ ⊢ Bnd(𝑑1) | Δ Γ, 𝑑1 ⊢ Bnds(𝑑2, . . . , 𝑑𝑛) | Σ

Γ ⊢ Bnds(𝑑1, . . . , 𝑑𝑛) | Δ ∪ Σ
BndsStep

𝑏 ∈ {variable, constructor} Γ ⊢ 𝜏 :{E} Type | Δ

Γ ⊢ Bnd(𝑛 :𝑟 𝜏 = 𝑏) | Δ
BndAbstr

𝑇 is a term Γ ⊢ 𝜏 :{E} Type | Δ Γ, 𝑛 :𝑟 𝜏 ⊢ 𝑇 :{𝑟 } 𝜏 | Σ

Γ ⊢ Bnd(𝑛 :𝑟 𝜏 = 𝑇) | Δ ∪ Σ
BndTerm

Γ ⊢ 𝜏 :{E} Type | Δ ∀𝑖 .
(
Γ, 𝑛 :𝑟 𝜏 ⊢ Clause𝑟 (𝐶𝑖) | Σ𝑖

)

Γ ⊢ Bnd
(
𝑛 :𝑟 𝜏 = 𝐶

)
| Δ ∪

⋃
𝑖 Σ𝑖

BndClauses

Γ ⊢ Bnds(Π) | Δ Γ;Π ⊢ PatWF𝑓 (⌊𝑓 ⌋ �̂�𝑃) FPVΠ

(
⌊𝑓 ⌋ �̂�𝑃

)
= BV(Π)

⌊𝑓 ⌋ �̂�𝑃 is linear ⌊𝑓 ⌋ �̂�𝑃 is forced-pattern-consistent

Γ;Π ⊢ ⌊𝑓 ⌋ �̂�𝑃 :𝑟{𝑟 } 𝜏 | Λ Γ,Π ⊢ 𝑅 :{𝑟 } 𝜏 | Σ

Γ ⊢ Clause𝑟 (Π. ⌊𝑓 ⌋ �̂�𝑃 = 𝑅) | Δ ∪ Λ ∪ Σ

Clause

Fig. 15. Inference rules for TTevar
★

bindings

annotations. Constraint set Δ contains constraints equating annotations in the corresponding
positions in 𝜏 and 𝜎 .

4.1.3 Rules. Figure 14 shows the constraint-generating typing rules for TTevar
★

terms, Figure 15
shows the rules for bindings, and Figure 16 shows the rules for patterns. These inference rules
mirror the checking rules, extracting the relationships between erasure annotations in them into
constraint sets.

While the checking rules used a single annotation as the subscript on colons in name bindings,
the inference rules use a set of annotations there.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:16 Matúš Tejiščák

(𝑛 :𝑠 𝜎 = variable) ∈ Π

Γ;Π ⊢ 𝑛 :
𝑞

𝐺
𝜎 | 𝑠 ↔ 𝐺

PatVar
(𝑛 :𝑠 𝜎 = constructor) ∈ Γ

Γ;Π ⊢ 𝑛 :
𝑞

𝐺
𝜎 | 𝑞 → (𝐺 ∧ 𝑠)

PatCtor

(𝑛 :𝑠 𝜎 = constructor) ∈ Γ

Γ;Π ⊢ ⌈𝑛⌉ :
𝑞

𝐺
𝜎 | 𝐺 → 𝑠

PatForcedCtor
(𝑓 :𝑞 𝜎) ∈ Γ

Γ;Π ⊢ ⌊𝑓 ⌋ :
𝑞
𝑞 𝜎 | ∅

PatDefName

Γ;Π ⊢ 𝐹 :
𝑞

𝐺
(𝑛 :𝑠 𝜎) → 𝜌 | Δ Γ;Π ⊢ 𝑋 :

𝑞

𝐺∧𝑡
𝜎 | Σ

Γ;Π ⊢ 𝐹 �̂� 𝑋 :
𝑞

𝐺
𝜌 [𝑛 ↦→ |𝑋 |] | Δ ∪ Σ ∪ 𝑠 ↔ 𝑡

PatApp

Γ,Π ⊢ 𝑇 :𝐺 𝜏 | Δ

Γ;Π ⊢ [𝑇] :
𝑞

𝐺
𝜏 | Δ

PatForced
Γ;Π ⊢ 𝑃 :

𝑞

𝐺
𝜏 | Δ Γ,Π ⊢ 𝜏 ≈ 𝜎 | Σ

Γ;Π ⊢ 𝑃 :
𝑞

𝐺
𝜎 | Δ ∪ Σ

PatConv

Fig. 16. Inference rules for TTevar
★

patterns

4.2 Solving Constraints

The set of constraints can be interpreted in several ways.
With only two erasure levels, we can view any constraint set Δ as a logic program containing

only Horn clauses, where E corresponds to False and R corresponds to True. The set of retained
bindings and applications is then given by the minimal model of this logic program, which is
unique [Gelfond and Lifschitz 1988; Van Emden and Kowalski 1976] and can be computed in linear
time [Dowling and Gallier 1984] in the size of Δ.
We can also view the erasure levels more generally as the lattice E < R, in which case we can

express the solution as a minimal fixed point, and compute it iteratively. This is extensible to lattices
containing additional erasure levels, such as irrelevance (not in scope of this paper).

4.2.1 Semantics of Erasure Constraints. More formally, let Φ : N ∪ {R, E} → {R, E} be a valuation
of erasure annotations of TTevar

★
such that Φ(R) = R and Φ(E) = E. We further overload this symbol

as Φ(𝐺) =
∧

𝑔∈𝐺 Φ(𝑔) for guard sets. We also overload this symbol for any syntactic construct 𝑋 of

TTevar
★

to mean substitution for evars, which yields a fully erasure-annotated TTRE
★

construct Φ(𝑋).
Valuations form a lattice; Φ ≤ Φ

′ iff ∀𝑟 . Φ(𝑟) ≤ Φ
′(𝑟). Valuation of evars Φ is a model of constraint

set Δ, written Φ |= Δ, iff for all constraints (𝐺 → 𝑟) ∈ Δ, Φ(𝐺) ⩽ Φ(𝑟). The solution of constraint
set Δ is its minimal model.

If the program is erasure-inconsistent, no solutionwill exist. For example, if the program generates
constraint R → E, the definition of |= requires that Φ(R) ⩽ Φ(E), which is a contradiction with the
definition of Φ and the fact that E < R.

4.3 Correctness

The proofs of the following properties are mostly straightforward. They rely only on a few el-
ementary lemmas, and are much easier than Church-Rosser (Conjecture 1), Subject Reduction
(Theorem 2), or commutativity of erasure and reduction (Theorem 1).

Theorem 3 (Soundness of erasure inference). Any valuation of evars Φ computed by the inference

rules is accepted by the checking rules.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:17

This theorem has four mutually inductive components, one for terms, one for patterns, one for

bindings, and one for telescopes of bindings (contexts).

Γ ⊢ 𝑇 :𝐺 𝜏 | Δ Φ |= Δ

Φ(Γ) ⊢ Φ(𝑇) :Φ(𝐺) Φ(𝜏)

Γ ⊢ 𝑃 :
𝑞

𝐺
𝜏 | Δ Φ |= Δ

Φ(Γ) ⊢ Φ(𝑃) :
Φ(𝑞)

Φ(𝐺)
Φ(𝜏)

Γ ⊢ Bnd(𝑑) | Δ Φ |= Δ

Φ(Γ) ⊢ Bnd
(
Φ(𝑑)

)
Γ ⊢ Bnds(Π) | Δ Φ |= Δ

Φ(Γ) ⊢ Bnds
(
Φ(Π)

)

Proof sketch 3. By (mutual) induction on the typing derivations, using lemmas about basic properties

of the system.

Theorem 4 (Completeness of erasure inference). Let 𝑃 be a TTevar
★

program. If Φ(𝑃), which is a

TTRE
★

program, satisfies the checking rules, then 𝑃 satisfies the inference rules, and Φ is a model of the

corresponding set of constraints (not necessarily optimal).

Like Theorem 3, also this theorem consists of four mutually recursive components.

Φ(Γ) ⊢ Φ(𝑇) :Φ(𝐺) Φ(𝜏)

∃Δ. Γ ⊢ 𝑇 :𝐺 𝜏 | Δ Φ |= Δ

Φ(Γ) ⊢ Φ(𝑃) :
Φ(𝑞)

Φ(𝐺)
Φ(𝜏)

∃Δ. Γ ⊢ 𝑃 :
𝑞

𝐺
𝜏 | Δ Φ |= Δ

Φ(Γ) ⊢ Bnd
(
Φ(𝑑)

)

∃Δ. Γ ⊢ Bnd(𝑑) | Δ Φ |= Δ

Φ(Γ) ⊢ Bnds
(
Φ(Π)

)

∃Δ. Γ ⊢ Bnds(Π) | Δ Φ |= Δ

Proof sketch 4. By (mutual) induction on the typing derivations, using lemmas about basic properties

of the system.

Corollary 4 (Optimality of erasure inference). Since erasure inference is complete and the inferred

solution is defined as the minimal model, it is optimal among all valuations of the given TTevar
★

program

that would pass the checking rules.

4.4 Complexity

If 𝑛 is the size of the input program and 𝑡 is the size of its typing derivation, erasure inference is
computable within 𝑂 (𝑛2 log𝑛 + 𝑡 log𝑛) time and 𝑂 (𝑛2) space.

• The number of inference rules invoked during erasure inference is 𝑡 , which includes 𝑂 (𝑛)

invocations of the syntax-driven typing rules, plus a potentially large number of invocations
of the conversion/reduction rules.
We will consider the syntax-driven and conversion/reduction invocations separately.

• Each syntax-driven inference rule performs a small number of erasure-inference-related
operations from the following palette. A small number is at most linear in the number of
sub-invocations of inference rules, and thus can be amortised as a constant per invocation.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:18 Matúš Tejiščák

let U : Type = constructor in

let C :𝑟C U = constructor in

let F : U → U → U = constructor in

F 𝑠1 C 𝑟1 (F 𝑠2 C 𝑟2 (F 𝑠3 C𝑟3︸ ︷︷ ︸
𝑛×

(. . .)))

(a) TTevar
★

program, some evars omitted

𝑠1 → 𝑟C
𝑟1 ∧ 𝑠2 → 𝑟C
𝑟1 ∧ 𝑟2 ∧ 𝑠3 → 𝑟C
𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑠4 → 𝑟C
𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑠5 → 𝑟C
. . .

(b) Generated constraints

Fig. 17. A quadratic case

Operation Time Allocated space Note

𝐺 → 𝑠 𝑂 (1) 𝑂 (𝑛) 𝑂 (1) space with sharing
𝑠 → 𝐺 𝑂 (𝑛) 𝑂 (𝑛)

𝑟 ↔ 𝑠 𝑂 (1) 𝑂 (1)

𝐺 ∧ 𝑠 𝑂 (log𝑛) 𝑂 (log𝑛) assuming tree-based finite sets
𝐺 ↔ 𝑠 𝑂 (𝑛) 𝑂 (𝑛)

Δ ∪ {𝐺 → 𝑟 } 𝑂 (𝑛 log𝑛) 𝑂 (log𝑛) assuming tree-based finite sets

The table does not contain Δ ∪ Σ. Instead, we can insert constraints one by one into a big
set in a manner similar to the Writer monad. Assuming a tree set, each insertion fits within
𝑂 (log𝑛) comparisons of 𝑂 (𝑛)-sized constraints along the insertion path in the tree.

• Each of these operations takes at most𝑂 (𝑛 log𝑛) time and allocates at most𝑂 (𝑛) new space,
which amounts to 𝑂 (𝑛2 log𝑛) time and 𝑂 (𝑛2) space for the syntax-driven part of erasure
inference.

• The number of non-syntax-driven rules invoked in conversion checking and reduction is not
bounded by 𝑂 (𝑛). However, these rules are already invoked by ordinary type checking and
perform only limited erasure-specific work.
Specifically, erasure inference incurs additional work in rule CRefl, when checking syntactic
equality of two terms. Besides the usual equality check required for type-correctness, erasure
generates constant-sized constraints, equating pairs of evars in the corresponding places of
the two terms.
There are at most𝑂 (𝑛) distinct evars, and thus at most𝑂 (𝑛2) distinct constraints that express
equality between pairs of evars. The total size of the generated constraint set, including the
constraints produced by the syntax-driven rules, therefore does not exceed 𝑂 (𝑛2).
Since the size of the typing derivation 𝑡 includes this syntactic equality check, and each rule
for constrained equality generates at most two constraints, {𝑝 → 𝑞, 𝑞 → 𝑝}, the syntactic
equality check performs at most 𝑂 (𝑡) insertions of constant-sized constraints into an 𝑂 (𝑛2)-
sized set of constraints. This can be done in time 𝑂 (𝑡 log𝑛).

• Worst-case-linear algorithms [Dowling and Gallier 1984] will solve a quadratically sized set
of constraints within quadratic time bounds.

• Given the above, we need 𝑂 (𝑛2 log𝑛) time and 𝑂 (𝑛2) space for the syntax-driven part of
erasure inference, 𝑂 (𝑡 log𝑛) time and 𝑂 (𝑛2) space for the non-syntax-driven part of erasure
inference, and 𝑂 (𝑛2) time for solving the constraints, which amounts to 𝑂 (𝑛2 log𝑛 + 𝑡 log𝑛)
time and 𝑂 (𝑛2) space in total.

Figure 17a shows a program that generates a quadratically sized set of constraints (Figure 17b). It
might be possible to use sharing to reduce the size of a concrete representation of this set to linear.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:19

4.5 Error Reporting

Erasure inference can produce error messages for inconsistent annotations by attaching a reason to
every constraint. Constraints then have the form𝐺 →𝜌 𝑟 , where 𝜌 is an annotation describing the
location in the code and the reason that gave rise to the constraint.
The solver can then keep track of all constraints involved in setting an annotation to R. If any

such annotation is manually marked E, the compiler can print a detailed error message explaining
why this is an inconsistent annotation.

5 RESULTS

We demonstrate the effectiveness of our erasure method by showing the output of erasure on an
example, and by showing a few benchmark results.

We have implemented this erasure method in a small prototype compiler1, which is itself written
in Haskell, accepts programswritten in a custom syntax, and generatesChicken Scheme [CHICKEN
project 2020]. The generated Scheme code is then compiled to native executables.
This prototype compiler is separate from Idris, although Idris 1 contains an implementation of

an untyped, flow-based predecessor of its erasure method.

5.1 Output of Erasure

Let us revisit the binary number data family from the introduction and look at how a small program
would be compiled using TT★.

Figure 18a shows an elaborated program that defines function add1 and applies it to the binary
representation of number 1. This formulation also includes erasure annotations as inferred from a
completely unannotated program by erasure inference. The annotations are shown only on the
binders, we omit them on application for brevity. This is the fully elaborated form of the program,
expressed in the TTRE

★
flavour of TT★, including all types and erasure annotations, and no unknowns.

By running erasure on this program, which strips all types and E-annotated portions of the
program, we obtain the erased program (Figure 18b), expressed in TT□

★
. This program contains no

overhead introduced by dependent typing anymore, and looks like an ordinary functional program.

5.2 Benchmarks

In Figure 19, we present the results of a few benchmarks we have performed with our implementa-
tion of erasure.
We ran the benchmarks on a test suite of example programs. The programs range from trivial,

such as a single const function, to complex, such as an implementation of a scope-indexed lambda
calculus, or a dependent-view-based implementation of a palindrome decider. All example programs
are entirely erasure-unannotated, with the exception of places like postulates of FFI printing
functions, or equivalent. Here is a brief description of some of them.

foreign is a test for FFI and decidable equality of lists
rev implements the reverse view for lists
rle implements run-length compression and decompression
bin implements an adder of binary numbers
tt implements an evaluator for a scope-indexed lambda calculus
palindrome implements a palindrome decider, using the reverse view as one of its components

Figure 19a illustrates the numbers of annotations in some of the example programs, and how
many were inferred as erased or retained. Programs bin and rle have very different sizes, yet

1https://github.com/ziman/ttstar

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

https://github.com/ziman/ttstar

91:20 Matúš Tejiščák

let N :E Type = constructor in

let Z :E N = constructor in

let S :E (𝑛 :E N) → N = constructor in

let double :E (𝑚 :E N) → (𝑛 :E N) → N

=

{
⌊double⌋ Z = Z

(𝑛 :E N). ⌊double⌋ (S 𝑛) = S
(
S (double 𝑛)

)
}
in

let Bin :E (𝑛 :E N) → Type = constructor in

let N :R Bin Z = constructor in

let I :R (𝑛 :E N) → Bin 𝑛 → Bin
(
S (double 𝑛)

)
= constructor in

let O :R (𝑛 :E N) → Bin 𝑛 → Bin (double 𝑛) = constructor in

let add1 : (𝑛 :E N) → (𝑥 :R Bin 𝑛) → Bin (S 𝑛)

=

⌊add1⌋ [Z] N = I Z N
(𝑛 :E N) (𝑏 :R Bin 𝑛). ⌊add1⌋ [double 𝑛] (O 𝑛 𝑏) = I 𝑛 𝑏

(𝑛 :E N) (𝑏 :R Bin 𝑛). ⌊add1⌋ [S (double 𝑛)] (I 𝑛 𝑏) = O (S 𝑛) (add1 𝑛 𝑏)

in

add1 (S Z) (I Z N)

(a) At the TTRE
★

stage: elaborated, annotated, unerased. Erasure annotations in applications have been omitted
for space reasons

let N = constructor in

let I = constructor in

let O = constructor in

let add1

=

⌊add1⌋ N = I N
⌊add1⌋ (O 𝑏) = I 𝑏
⌊add1⌋ (I 𝑏) = O (add1 𝑏)

in

add1 (I N)

(b) At the TT□
★
stage: erased

Fig. 18. A TT★ program that computes the successor of 1.

they erase to programs of about the same size. There is much more dependent typing involved in
program bin.
Figure 19b shows the total runtime of the compiler, including the (external) Chicken Scheme

compilation stage. Erasure decreases the amount of code to generate and compile at later stages,
and it saves much more time than it takes.

How much time does it take? Figure 19c shows the time taken by erasure inference, depending
on the number of erasure annotations. Each data point is an example program from our test suite.
We measure the erasure time as the difference between a normal run of the compiler, compared to
a run which skips inference and sets all evars to R. The measured time includes all steps such as
parsing, erasure inference, and erasure itself, up to and including Scheme code generation. The

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:21

times do not include the Scheme compiler stage. It’s hard to reasonably infer asymptotic behaviour
from this data set but it suggests that our implementation can process about 105 erasure annotations
per second in our example programs.

We have made no particular effort to make our implementation run fast. Yet in our implementa-
tion, when compiling our example programs, erasure inference saves several orders of magnitude
more time than it takes.

Figure 19d compares the run time of unerased and erased (compiled) program palin. This program
reads 𝑛 characters as a list, creates a double-ended view of the list, and uses this view to decide
whether the list is a palindrome. The plots show the run time on the vertical axis, and the input size
𝑛 on the horizontal axis. The horizontal axes use different scales in the two plots. We experimentally
determined that the unerased version seems to run in𝑂 (𝑛3) time2, while erasure recovers the𝑂 (𝑛)

run time3, as expected.

6 DISCUSSION

6.1 Remarks

6.1.1 Forced Patterns and Erasure Annotations. We claim that the presented erasure method works
without any programmer-provided erasure annotations. However, one might argue that forced
patterns and forced constructors are a form of erasure annotations.

This is however not true. Erasability is a consequence of operational behaviour of a program and
the choice of forced patterns is a choice of operational behaviour, not a choice of erasability ś we
can always have constructor fields that are forced in a pattern match but not erasable, and vice
versa. However, if we care about erasability, we need to care about operational behaviour and thus
about forced patterns.

This does not mean that programmers have to start annotating forced patterns explicitly if they
want good erasure ś elaboration in Idris usually does a good job in choosing the forced patterns
for the programmer. However, the choice must be made ś and it has always been made, tacitly
(Idris) or explicitly (Agda) ś and since the choice matters, we should give programmers means to
influence it.

6.1.2 Modularity of the Analysis. The erasure inference procedure, as given in this paper, is whole-
program. Real-world implementations will need to modularise it. Our experience suggests that a
useful approach might be requiring programmers to erasure-annotate data constructors explicitly,
and solving erasure constraints for everything else automatically per-module.

6.1.3 Matching on Erased Data. The rules of TT★ allow matching on erased data under certain
circumstances. This has already been shown in Section 2.3, where we project variable 𝑘 out of an
erased argument.
Another very common example of this is matching on equality proofs. Consider the function

subst shown in Figure 20. In the (only) clause of subst, Refl is a forced constructor because it is the
only possible choice, consistent according to Section 3.5.3, Definition 1. We furthermore choose to
force its argument 𝑥 by the implicit argument 𝑥 of function subst.
Since the tag and the only field of Refl is erased, erasure inference will then mark the equality

proof (and most other arguments of subst) as erased, and subst becomes an identity function after
erasure.

2We cannot explain why the experimentally determined exponent is approximately 2.97, while the program should be

quadratic in theory.
3The peaks in the plot seem to be exponentially spaced and we expect that they are caused by Chicken RTS effects, such as

more frequent garbage collection when approaching a heap resizing threshold.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:22 Matúš Tejiščák

foreign

tt

rev

rle

bin

palin

0 200 400 600
count

R E

(a) Inferred annotations

rle

bin

palindrome

0 1 2 3
total compilation time [s]

erased unerased

(b) Total compilation time including erasure
Error bars show minimum and maximum around the mean.

bin

foreign

palindrome

rev

rle

tt

0

2

4

6

0 200 400 600
count of all annotations

in
fe
re
n
ce
+
er
as
u
re

ti
m
e
[m

s]

(c) Erasure time vs. number of annotations

unerased erased

0 50 100 150 200 250 0 5×105 106
0

2

4

6

input size

ru
n
ti
m
e
[s
]

erasure

unerased

erased

(d) Runtime of a typical program (palindrome decider), from 𝑂 (𝑛3) to 𝑂 (𝑛).

Fig. 19. Erasure in numbers and plots
Most plots show means over multiple runs.

Error bars that have been omitted would be uselessly narrow.

The example in Section 2.3 further illustrates that the notion of erasure is much more subtle
than just disallowing matching on erased data, and it may take into account also contextual clues
and inductive invariants.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:23

data Id : {𝑎 : Type} → (𝑥 : 𝑎) → (𝑦 : 𝑎) → Type where

Refl : {𝑎 : Type} → (𝑥 : 𝑎) → Id {𝑎} 𝑥 𝑥

subst : {𝑎 : Type} → {𝑃 : 𝑎 → Type} → {𝑥 : 𝑎} → {𝑦 : 𝑎}

→ Id {𝑎} 𝑥 𝑦 → (px : 𝑃 𝑥) → 𝑃 𝑦

subst {𝑎} {𝑃} {𝑥} {𝑦}
(
⌈Refl⌉ [𝑥]

)
px = px

Fig. 20. Pattern-matching on erased arguments

6.1.4 Identity Optimisation. Thanks to erasure, we can automatically spot identity functions post-
erasure. Our implementation has a separate pass that removes applications of identity functions,
such as subst above, from the erased code to make it even cleaner.
This brings further asymptotic improvements since it can also recognise various weakening

functions such as finWeaken : Fin 𝑛 → Fin (S 𝑛), which also become identity functions after
erasure, thus eliminating 𝑂 (𝑛) work in each such application.
We do not discuss further details of this optimisation in this paper; we just note that this

optimisation is an indirect benefit of erasure.

6.1.5 Strong Normalisation. It is known that unrestricted erasure does not preserve strong normali-
sation [Letouzey 2003, 2004, 2008; Mishra-Linger 2008]. Mishra-Linger shows a brief example [2008,
p. 133], where a function takes a void argument, which ends up being erased. This exposes ill-typed
redexes beneath the erased lambda even without providing the (impossible) argument.
Letouzey observes that these łproblematicž invocations are rather rare [Letouzey 2008, Sec. 4]

and the extraction process of Coq is special-cased to leave problematic terms guarded by at least
one lambda ś by erasing all erasable arguments of a function, and by inserting dummy lambdas
around problematic partial applications [Letouzey 2003, Sec. 2.1].
TT★ does not address this problem explicitly and does not discuss totality checking, either; its

implementations may prefer to.

6.1.6 FFI and Monadic I/O. TT★ works well with FFI and monadic I/O. For FFI, the programmer
must erasure-annotate foreign postulates explicitly, and everything else is inferred. Monadic I/O
needs exactly one well-placed R-annotation in the standard library to prevent the compiler from
erasing the RealWorld token. The token is indeed unused but we want to retain it to obtain proper
delaying and sequencing of side effects.

6.2 Related Work

The literature approaches the question of erasure in various ways, and these approaches could be
classified by various criteria, such as whether irrelevance is identified with erasure or whether
erasure is a property of variable bindings (extrinsic erasure) or mediated by the type of variables
(intrinsic erasure); whether erasure is identified with irrelevance, etc.

6.2.1 Mishra-Linger, IPTS, EPTS. TT★ uses an approach similar toMishra-Linger’s dissertation [2008],
in that erasure is extrinsic: it’s a property of the context in which a term appears, not of its type.
Mishra-Linger also does not conflate irrelevance and erasability, but discusses the possibility of
doing so. TT★ adds mainly the support for type families and full dependent pattern matching.

6.2.2 Plenty O’ Nuttin’. Like EPTS [Mishra-Linger 2008] and TT★, McBride’s calculus [2016] intro-
duces quantities on binders. Unlike TT★, the calculus allows an extra łlinearž quantity in addition
to łerasedž and łunerasedž, thus unifying erasure and linear types in a single dependently typed

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:24 Matúš Tejiščák

framework. It is presented bidirectionally and does not annotate applications with quantities. The
calculus uses eliminators instead of patternmatching, in line withMcBride’s previous work [Goguen
et al. 2006]. There is no inference of quantities.

6.2.3 QTT. Atkey [2018] reformulates and corrects McBride’s calculus [2016], developing its
semantics. QTT does not feature the rule Weak introduced in McBride’s calculus. Atkey does not
give pattern matching or inference of quantities, either.

6.2.4 Idris. TT★ is based on TT, the core calculus of Idris [Brady 2013], although it departs from
Idris in how data is represented. Idris originally had a way to erase some data via forcing, detagging,
and collapsibility [Brady et al. 2004]. This method cannot erase indices like those occurring in the
type family of binary numbers in this paper, as discussed in Section 2.4.

Later development added untyped, flow-based erasure inference, which can erase the examples
shown in this paper ś and was a significant improvement on the status quo in 2014 ś but does not
work well in higher-order and very dependent scenarios. Consider the following (contrived but
short) program.

RetTy : (erased : Bool) → Type
RetTy True = (𝑥 :E Int) → Int
RetTy False = (𝑥 :R Int) → Int

f : (erased : Bool) → RetTy erased

f True 𝑥 = 0

f False 𝑥 = 𝑥

There is little hope to express the above erasure pattern without typed erasure: the second argument
of f can be erased if its first argument is True. TT★ does not have this problem and it can spot the
erasure opportunity even if the explicit annotations in RetTy are removed.

Idris 2 [Brady 2020] has a new core calculus based on QTT [Atkey 2018], and thus features typed
erasure like TT★, although without erasure inference.

6.2.5 Agda. Agda [Norell 2007] has multiple ways to achieve erasure. The forcing optimisa-
tion [Brady 2005], can erase some interesting classes of data (Section 2.4). Irrelevance [Agda authors
2020a] is sufficient for erasure of proofs, especially proof members of records, but does not work
for erasure of indices, as discussed in Section 2.2.

Shape Irrelevance. To alleviate some issues with full-on irrelevance in a language with typed
equality and 𝜂-expansion, Agda features shape irrelevance [Abel et al. 2017]. The programmer can
mark some arguments of type constructors as shape-irrelevant. Such a type constructor can then
receive irrelevant arguments in these positions. In practice, this results in sizes ignored in the
equality of (applications of) data constructors, because they are irrelevant there, but not ignored in
the equality of (applications of) type constructors, because they are only shape-irrelevant there.
In the literature, shape-irrelevance works only for sizes in the context of Agda’s sized types, and
cannot be consistently generalised for all types [Abel et al. 2017], but could probably cover the
most useful use cases. In the implementation, Agda experimentally allows shape-irrelevant indices
for non-Size types under certain circumstances, too.

Run-Time Irrelevance. A relatively recent addition to Agda is run-time irrelevance [Agda authors
2020b], which seems to be equivalent to erasure as discussed in this paper.

6.2.6 Zombie. Zombie [Sjöberg 2015] also uses irrelevance to express erasure. Irrelevance is
extrinsic. With untyped equality, this does not seem to cause serious issues, except for the mild
loss of expressivity caused by the identification of the two notions. Zombie can successfully erase
the examples in this paper. Zombie has parameterised inductive types and non-dependent pattern
matching. Indexed type families are encoded indirectly using Henry Ford indices [McBride 2000],

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:25

and dependencies from pattern matching are reified as explicit equalities in the scope. TT★ supports
dependent pattern matching directly and has erasure inference.

6.2.7 Cedille. Cedille [Stump 2018] has the implicit product type ∀𝑥 : 𝑇 . 𝑇 ′, which is constructed
by the implicit lambda Λ𝑥 : 𝑇 . 𝑇 ′, similar to ICC [Miquel 2001]. Cedille also supports erased let
expressions. Erased values are irrelevant in Cedille, and equality is untyped. Inductive families and
pattern matching are expressed in terms of induction principles in the core language. There is no
inference of erasure.

6.2.8 Dafny and Boogie 2. Dafny [Leino 2010] is an imperative language with built-in specification
constructs, and semantics specified by translation to Boogie 2 [Leino and Rümmer 2010]. Dafny
features ghost variables, where łas far as the verifier is concerned, there is no difference between
ghost variables and physical variablesž [Leino 2010]. Flow of information from ghost to non-ghost
variables is syntactically forbidden and thus the compiler may erase ghost variables from the
program before generating code.

6.2.9 Why3. Why3 [Filliâtre and Paskevich 2013] is a platform for program verification. Its pro-
gramming and specification language, WhyML, features ghost values, expressions, and constructor
fields, which are erased during code extraction.

6.2.10 Dependent Haskell. Dependent Haskell [Eisenberg 2016; Gundry 2013; Weirich et al. 2017]
lets the programmer choose from a palette of 12 quantifiers, each offering a different combination
of dependence, erasability4, visibility and matchability [Eisenberg 2016, Sec. 4.2.5, Fig. 4.1]. In the
absence of explicit choice, the default is the usual non-dependent, unerased, visible binder (→).
TT★ models only the erasure aspect, and has inference for it.

6.2.11 Coq. Coq [The Coq development team 2004] achieves erasure via a separate universe of
types, called Prop. As the name suggests, the universe is intended for propositions, proofs of which
can be erased. Values of non-propositional types, such as the indices of the binary type family
shown in this paper, cannot be erased this way, as discussed in Section 2.1.
There have been attempts to bring erasability of non-proofs to Coq without duplicating all

non-Prop types in Prop [Leivent 2014a; Letouzey and Spitters 2005] via an erased monad. However,
the erased monad in Coq has shortcomings.

Size Issues. Dockins pointed out [2014] that the axiom (Erase 𝑥 = Erase 𝑦) → (𝑥 = 𝑦) is incon-
sistent if Erased : Type → Prop, by reduction to Hurkens’s paradox [Hurkens 1995]. Restricting
Erased to Set → Prop may be a way to resolve this issue [Herbelin 2014], but then erasure cannot
talk about type values.

Indirectness / Syntactic Noise. Manipulation of values in the Erased monad requires pushing
operations and values into the monad. In contrast, one can simply apply any pure function to an
extrinsically erased value without any ceremony, as long as the whole application appears in an
erased position.

Contextuality and Interactive Development. Consider the following incomplete definition of a
function that should take an erased natural number and return an erased pair of natural numbers,
expressed in an Idris-style syntax.

𝑓 : Erased N→ Erased (N,N)

𝑓 en = Erase (_0, _1)

4Eisenberg calls this property łirrelevancež.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

91:26 Matúš Tejiščák

Above, _0 and _1 are holes, which are hypothetical values that would complete the program. Type-
based erasure will disallow filling the holes with the erased natural number en because the types of
the holes are non-erased, even though the whole pair is erased.
It may therefore happen during interactive proving that the programmer faces an unsolvable

proof obligation, where they need to supply an unerased value while having only an erased value
in the context, even though the overall goal is erased. In such cases, they need to backtrack and
redo the proof while taking care to manually preserve the erasedness of the goal along the way.

The same restriction is present in type signatures, which are themselves always entirely erased.
This shows that type-based erasure is inconvenient in these situations: it does not make use of

the contextual information.

Erasure Inference. Upon discovery of erasability of a bound variable, erasure inference would
have to change its type from 𝜏 to Erased 𝜏 . Furthermore, due to the indirectness mentioned above,
it would also have to rewrite all terms that depend on this variable, including at the type level,
because of the lack of contextuality mentioned above. This changes the type signature of the
function and further rewriting may be necessary in its transitive dependencies and transitive
reverse dependencies. This is likely not practical.

6.2.12 F*. F* has a special effect monad called GHOST, which is an abstract alias of PURE, with
automatic lifting of PURE computations to GHOST at the type level (but never in the other
direction). [Swamy et al. 2016]

F* has another abstract alias, erased, defined as the identity typemappingprivate type erased (𝑎 :

Type) = 𝑎. Since this definition is hidden, user code sees erased 𝑎 as an opaque type distinct from
𝑎, and cannot interchange the two.

Type erased 𝑎 is opaque but its values can be łunwrappedž in the GHOST monad using reveal :
erased 𝑎 → G 𝑎, (G is the effect connected with the GHOST monad), and thus available in
specifications. Hence the name translucent abstraction: not entirely opaque, not entirely transparent;
one can get only a ghostly glimpse of what the erased value once used to be.
There is work on inference of effects [Ahman et al. 2016] but it omits the GHOST monad.

6.3 Future Work

Church-Rosser. Confluence of reduction in TT★ is currently a conjecture. The authors have a
partial proof, which needs generalisation due to the power of unrestricted let. Future work might
need to approach let a bit less ambitiously.

Erasure Polymorphism of Functions. Consider the program in Figure 21. In the expression (id 3 +

expensive : N apply :
(
(𝑥 : N) → N

)
→ (𝑦 : N) → N

expensive = . . . apply 𝑓 𝑦 = 𝑓 𝑦

const42 : (𝑥 : N) → N id : (𝑥 : N) → N

const42 𝑥 = 42 id 𝑥 = 𝑥

Fig. 21. Example of a program where erasure polymorphism would be useful.

const42 expensive), erasure inference will correctly notice that const42 does not use its argument,
marking the expensive argument as erased.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:27

However, in (apply id 3 + apply const42 expensive), erasure inference will not recognise
expensive as erased, even though the program is łmorallyž the same as the previous one without
apply.
This is not a shortcoming of inference. The problem is that there is no TT★ type of apply that

would lead to erasure of expensive in this program while keeping it consistent, even if we annotate
it manually. Besides unnecessary evaluation (depending on the normalisation strategy), non-erasure
of expensive might also (transitively) block erasure in other parts of the program.

Erasure Polymorphism of Data. Both Idris and Coq have several flavours of dependent pairs,
differing in which component(s) of the pair are erased, and programmers must choose the correct
flavour explicitly. It would be useful to extend the erasure framework to deal with this automatically,
for all data types, without explicit duplication or explicit usage of the Erased wrapper.

More Quantities. We are working at merging the ideas from TT★, quantity-based linear sys-
tems [Atkey 2018;McBride 2016], and irrelevance into a single systemwith fourmodalities/quantities
(irrelevant, erased, linear/affine, unrestricted), quantity inference, and pattern matching. This seems
to work but TT★-style unrestricted whole-program inference of linearity seems to be computa-
tionally challenging in larger programs since the constraints are no longer monotonic. A more
conservative approach may be necessary.

6.4 Conclusion

If we want to propose dependently typed languages as a way to reduce the cost of correctness
in programming, we must address the inefficiencies that dependent types could cause. Making
programs run asymptotically slower just by describing them more precisely is unacceptable.
In this paper, we argued why erasure is necessary (Section 1); shown why some of the existing

approaches are insufficient and address related but different problems (Section 2); proposed a core
calculus that supports erasure (Section 3) while affording conveniences such as pattern matching;
shown that erasure has desirable properties such as preservation of reduction (Section 3.7); proposed
an erasure inference algorithm that infers annotations in partly or completely unannotated programs
(Section 4); showed that this inference algorithm is sound, complete, and optimal with respect to
the typing rules (Section 4.3); and showed using an implementation and its benchmarks that the
erasure approach is effective in that it may not only make the compiled programs asymptotically

faster at run time, and enable other optimisations that further improve the asymptotic complexity
of the generated code (Section 6.1.4), but in our implementation, erasure saves several orders of
magnitude more compilation time than it takes.
We therefore believe that erasure is a win-win solution to the above unacceptable situation.

ACKNOWLEDGMENTS

The author would like to thank Edwin Brady, Andreas Abel, Jonathan Leivent, and Jan de Muijnck-
Hughes for feedback, conversations, suggestions, draft reviews, and other support.

The author is very grateful to the anonymous referees for their reviews, which improved many
aspects of the paper.
This work has been supported by the University of St Andrews, School of Computer Science.

REFERENCES

Andreas Abel. 2011. Irrelevance in Type Theory with a Heterogeneous Equality Judgement. Springer Berlin Heidelberg, Berlin,

Heidelberg, 57ś71. https://doi.org/10.1007/978-3-642-19805-2_5

Andreas Abel. 2017. Irrelevance and resurrection in type signatures. Agda Mailing List, 29 July 2017. https://lists.chalmers.

se/pipermail/agda/2017/009640.html

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

https://doi.org/10.1007/978-3-642-19805-2_5
https://lists.chalmers.se/pipermail/agda/2017/009640.html
https://lists.chalmers.se/pipermail/agda/2017/009640.html

91:28 Matúš Tejiščák

Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. 2017. Normalization by evaluation for sized dependent types.

Proceedings of the ACM on Programming Languages 1, ICFP (2017), 33. https://doi.org/10.1145/3110277

Agda authors. 2020a. Agda 2.6.1 documentation: Irrelevance. https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html

Accessed on 23 May 2020.

Agda authors. 2020b. Agda 2.6.1 documentation: Run-time Irrelevance. https://agda.readthedocs.io/en/v2.6.1/language/

runtime-irrelevance.html Accessed on 23 May 2020.

Danel Ahman, Catalin Hritcu, Guido Martínez, Gordon D. Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy.

2016. Dijkstra Monads for Free. CoRR abs/1608.06499 (2016). https://doi.org/10.1145/3093333.3009878 arXiv:1608.06499

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.).

ACM, 56ś65. https://doi.org/10.1145/3209108.3209189

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions As a Programming Language with

Dependent Types. In Proceedings of the Theory and Practice of Software, 11th International Conference on Foundations of

Software Science and Computational Structures (FOSSACS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 365ś379.

https://doi.org/10.1007/978-3-540-78499-9_26

Edwin Brady. 2005. Practical Implementation of a Dependently Typed Functional Programming Language. Ph.D. Dissertation.

http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal

of Functional Programming 23, 5 (2013), 552ś593. https://doi.org/10.1017/S095679681300018X

Edwin Brady. 2020. Idris 2: Quantitative Type Theory in Action. Submitted. https://www.type-driven.org.uk/edwinb/

papers/idris2.pdf

Edwin Brady, Conor McBride, and James McKinna. 2004. Inductive families need not store their indices. In Types for Proofs

and Programs, Torino, 2003, volume 3085 of LNCS. Springer-Verlag, 115ś129. https://doi.org/10.1007/978-3-540-24849-1_8

The CHICKEN project. 2020. CHICKEN Scheme. https://www.call-cc.org/. Accessed: 2020-04-25.

Robert Dockins. 2014. Re: Problem with tactic-generated terms. https://sympa.inria.fr/sympa/arc/coq-club/2014-09/

msg00114.html, accessed on 2015-02-28.

William F. Dowling and Jean H. Gallier. 1984. Linear-time algorithms for testing the satisfiability of propositional horn

formulae. The Journal of Logic Programming 1, 3 (1984), 267 ś 284. https://doi.org/10.1016/0743-1066(84)90014-1

Richard A Eisenberg. 2016. Dependent types in Haskell: Theory and practice. Ph.D. Dissertation. University of Pennsylvania.

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 ś Where Programs Meet Provers. In ESOP’13 22nd European

Symposium on Programming (LNCS), Vol. 7792. Springer, Rome, Italy. https://doi.org/10.1007/978-3-642-37036-6_8

Michael Gelfond and Vladimir Lifschitz. 1988. The stable model semantics for logic programming.. In ICLP/SLP, Vol. 88.

1070ś1080.

Healfdene Goguen, Conor McBride, and James McKinna. 2006. Eliminating Dependent Pattern Matching. Springer Berlin

Heidelberg, Berlin, Heidelberg, 521ś540. https://doi.org/10.1007/11780274_27

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde. http:

//adam.gundry.co.uk/pub/thesis/

Hugo Herbelin. 2014. Re: Problemwith tactic-generated terms. https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00118.

html, accessed on 2015-02-28.

Antonius J. C. Hurkens. 1995. A simplification of Girard’s paradox. In Typed Lambda Calculi and Applications, Mariangiola

Dezani-Ciancaglini and Gordon Plotkin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 266ś278. https://doi.org/

10.1007/BFb0014058

K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International Conference on Logic

for Programming Artificial Intelligence and Reasoning. Springer, 348ś370. https://doi.org/10.1007/978-3-642-17511-4_20

K Rustan M Leino and Philipp Rümmer. 2010. A polymorphic intermediate verification language: Design and logical

encoding. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,

312ś327. https://doi.org/10.1007/978-3-642-12002-2_26

Jonathan Leivent. 2014a. Mindless Coding. https://github.com/jonleivent/mindless-coding, accessed on 2015-02-28.

Jonathan Leivent. 2014b. Re: Problem with tactic-generated terms. https://sympa.inria.fr/sympa/arc/coq-club/2014-09/

msg00110.html, accessed on 2015-02-28.

Pierre Letouzey. 2003. A New Extraction for Coq. In Types for Proofs and Programs, Herman Geuvers and Freek Wiedijk

(Eds.). Lecture Notes in Computer Science, Vol. 2646. Springer Berlin Heidelberg, 200ś219. https://doi.org/10.1007/3-

540-39185-1_12

P. Letouzey. 2004. Programmation fonctionnelle certifiée ś L’extraction de programmes dans l’assistant Coq. Ph.D. Dissertation.

Université Paris-Sud.

P. Letouzey. 2008. Extraction in Coq, an Overview. In Logic and Theory of Algorithms, Fourth Conference on Computability in

Europe, CiE 2008 (Lecture Notes in Computer Science), A. Beckmann, C. Dimitracopoulos, and B. Löve (Eds.), Vol. 5028.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

https://doi.org/10.1145/3110277
https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html
https://agda.readthedocs.io/en/v2.6.1/language/runtime-irrelevance.html
https://agda.readthedocs.io/en/v2.6.1/language/runtime-irrelevance.html
https://doi.org/10.1145/3093333.3009878
https://arxiv.org/abs/1608.06499
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/978-3-540-78499-9_26
http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf
https://doi.org/10.1017/S095679681300018X
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
https://doi.org/10.1007/978-3-540-24849-1_8
https://www.call-cc.org/
https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00114.html
https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00114.html
https://doi.org/10.1016/0743-1066(84)90014-1
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/11780274_27
http://adam.gundry.co.uk/pub/thesis/
http://adam.gundry.co.uk/pub/thesis/
https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00118.html
https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00118.html
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-12002-2_26
https://github.com/jonleivent/mindless-coding
https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00110.html
https://sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00110.html
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12

A Dependently Typed Calculus with Pattern Matching and Erasure Inference 91:29

Springer-Verlag. https://doi.org/10.1007/978-3-540-69407-6_39

Pierre Letouzey and Bas Spitters. 2005. Implicit and noncomputational arguments using monads.

Conor McBride. 2000. Dependently typed functional programs and their proofs. Ph.D. Dissertation. University of Edinburgh.

College of Science and Engineering. School of Informatics.

Conor McBride. 2016. I got plenty o’nuttin’. In A List of Successes That Can Change the World. Springer, 207ś233. https:

//doi.org/10.1007/978-3-319-30936-1_12

AlexandreMiquel. 2001. The Implicit Calculus of Constructions. In TLCA. 344ś359. https://doi.org/10.1007/3-540-45413-6_27

Richard Nathan Mishra-Linger. 2008. Irrelevance, Polymorphism, and Erasure in Type Theory. http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.154.5619&rep=rep1&type=pdf

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Vilhelm Sjöberg. 2015. A Dependently Typed Language with Nontermination. Ph.D. Dissertation. University of Pennsylvania.

Aaron Stump. 2018. Syntax and Semantics of Cedille. CoRR abs/1806.04709 (2018). arXiv:1806.04709 http://arxiv.org/abs/

1806.04709

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. 2016.

Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and

Rupak Majumdar (Eds.). ACM, 256ś270. https://doi.org/10.1145/2837614.2837655

The Coq development team. 2004. The Coq proof assistant reference manual. LogiCal Project. http://coq.inria.fr Version 8.0.

Maarten H Van Emden and Robert A Kowalski. 1976. The semantics of predicate logic as a programming language. Journal

of the ACM (JACM) 23, 4 (1976), 733ś742. https://doi.org/10.1145/321978.321991

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.

1145/3110275

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/3-540-45413-6_27
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.5619&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.5619&rep=rep1&type=pdf
https://arxiv.org/abs/1806.04709
http://arxiv.org/abs/1806.04709
http://arxiv.org/abs/1806.04709
https://doi.org/10.1145/2837614.2837655
http://coq.inria.fr
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275

	Abstract
	1 Introduction
	2 Motivation
	2.1 Intrinsic Erasure
	2.2 Irrelevance
	2.3 Laziness
	2.4 Forcing, Detagging, and Collapsing

	3 A Dependently Typed Calculus with Erasure
	3.1 Syntax
	3.2 Pattern Matching
	3.3 Reduction Rules
	3.4 Variants of TT
	3.5 Typing Rules
	3.6 Erasure
	3.7 Properties

	4 Erasure Inference
	4.1 Constraint-Generating Rules
	4.2 Solving Constraints
	4.3 Correctness
	4.4 Complexity
	4.5 Error Reporting

	5 Results
	5.1 Output of Erasure
	5.2 Benchmarks

	6 Discussion
	6.1 Remarks
	6.2 Related Work
	6.3 Future Work
	6.4 Conclusion

	Acknowledgments
	References

